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MUDE - Week 2.3: Signal Processing

« We will add the dimension of time to inputs to models, and to observations.
* We will study signals:
« A signal, as a function of one or more variables, may be
defined as an observable change in a quantifiable entity*

 If the independent variable is time, signal = time series

« We cover time series analysis (week 2.4).

* Week 2.3 entails the study of time-varying signals in the frequency domain.

TU De I ft * Pragnan Chakravorty, "What Is a Signal? [Lecture Notes]," IEEE Signal Processing
Magazine, vol. 35, no. 5, pp. 175-177, Sept. 2018. doi: 10.1109/MSP.2018.2832195



Why the frequency domain?

« [t allows to observe several characteristics of the signal that are either not easy
to see, or not visible at all when you look at the signal in the time domain.

« For instance, frequency-domain analysis becomes useful when you are looking
for cyclic behavior of signals.
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deterministic design
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Tacoma Narrows Bridge also known as ‘Galloping Gertie’ ...
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Tacoma Narrows Design

Wind can pass through trusses Wind would be forced around trusses
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video by Smithsonian National Air and Space Museum



signal: time and frequency domain

two different view-points on the same phenomenon: f
/ requency

time-domain frequency-domain fime

x(t X(f) _ _ _
N " solution strategy in practice

\ /\ /\ / [ time frequency
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transiform

solve
frequency domain offer extra tools for the engineer transform
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transforming Differential Equation into frequency domain
(optional)

1st order DE: %di’l(tt) + y(t) = x(t)

transform from time to frequency domain: % j2rfY(f)+Y(f) = X(f)

Y(f) _

= which i tem fr ncv r n
X janse Which s sysiem frequency response

reworking into: H(f) =

transform back to time domain h(t) = ke **u(t), which is system impulse response

k > 0, u(t) step response
now compute output y(t) given input x(t): u(t) =1fort >0

convolution: y(t) = x(t) * h(t) = [*_x(Dke *EPy(t — 1)da
for instance with x(t) = u(t) we find y(t) = fot ke *@-Ddy=1—e"% witht >0
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solving Differential Equation in time domain (optional

e
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short note on solving 1st-order differential
equation - worked example

Christian Tiberius

November 2022

1 Introduction

This short note demonstrates, by means of an example, how to solve, analyti-
cally, in the time domain, a basic first order differential equation.

The example, and derivation, is taken from ‘Signals and systems - continuous
and diserete’ by R.E. Ziemer, W.H. Tranter and D.R. Fannin, Prentice Hall, 4th
edition, 1998 (Example 2-1).

2 First order differential equation
The differential equation is given as

1 dy(t)
- t) =zx(t 1
T+ () = =(0) M
with input z(t) and output y(t).
The goal of this exercise is to express output y(t) (explicitly) in terms of
input z(t).
We assume that x(t) is applied at time t = tg and that y(tg) = yo.

3 Homogeneous solution
The solution to the homogeneous differential equation

1 dy(t)
SEAN ) 2
o Ty =0 @
is found by assuming a solution of the form y(t) = Ae”, and substituting this
in the above homogeneous differential equation leads to p = —k. Hence, the
homogeneous solution reads

y(t) = Ae™™ 3)

4  Total solution

In order to find the total solution we use the technique of ‘variation of param-
eters’, which consists of assuming a solution of the form of the above homoge-
neous solution, but with undetermined coefficient A replaced by a funetion of
time A(t) which is to be found. Hence, we assume that

y(t) = A(t)e (4)
Differentiating (and using the chain-rule), leads to
dy(t) _ dA(t) —kt

= (—— — kA(t 5
= e (5)
Next, substituting the assumed solution (4) and its derivative (5) in the

original differential equation (1), we obtain

1 _wdAl)
Y owm
= )
t) _ ok
i = T ke (6)

Solving for %&ﬂ. i.e. integrating the above expression, yields
+
A(t) — A(te) = kf T(A)FrdA
to

and using (4) at time tg: ylto) = yo = Altg)e™*, or A(ty) = yp e**2, so we find
the varying parameter A(t) as

¢
At) = kf (A)eFAdA 4 yg ekte (7)
ta
and this can be substituted in the assumed solution (4) and this yields

¢
ylt) =yoe x4 kf 2(A)e~ Mgy
to

Assuming that the input z(f) is applied at ¢ = —oc, henee tg = —co, and that
o = y(to) = y(t = —o0) =0, we obtain

y(t) =f' 2(A)ke - Ndx (8)

5 Solution

Now the output y(t) to input x(f) ean be found through solving the above
integral.



system: input - output

1.5

x(t)

0.5¢

-0.5
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sound demo

Signal Processing with audio

Author: Steven Lin

Date: 21.10.2022
Reference: Music in Python by Katie He on Towards Data Science, hitps://towardsdatascience.com/music-in-python-2f054deb41f4

This notebook is divided into three parts:

« use signal processing to analyze prominent signals in the song Bohemian Rhapsody by Queen.
« filter out higher frequencies of the song, analyze, and listen to it again.
« create audio of C chord (C major scale) using 8 single-frequency sine waves. Compare the spectrograms of C chord and the song.

You might need to install pygame first (under the Anaconda Prompt):
« pip install pygame
In [1]: dimport numpy as np
import time

from matplotlib import pyplot as plt
import bpveame
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time and frequency representation: spectrogram
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Phyphox_app demo (Smartphone) SCTRUM HIST SETI'IN W DATA

C  Fourier Transform

you do own a very nice collection of sensors .... 100

FFT Mag (a.u.)

TS T SRS e

s phyphox

physical phone experiments
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History

Peak-Frequency (k¢ »
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seismic reflection

source

geophones

position offset [ m] ——
surface waves
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spectral analysis 1n raillway-engineering

using DFT, compute and visualize magnitude (amplitude) or power spectrum

analyzing signals: what frequencies do impact my structure,
and with what amplitude/power?
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driving down mono-piles

&

installing offshore wind-turbines:
hammering it down ...

by-© Hans Hillewaert, CC BY-SA 4.0,

windpowernl.com https:/leommons.wikimedia.org/w/index.php?curid=6361901
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Gentle Driving of Piles (GDP)

do it differently:

simultaneously apply low- and high-frequency
vibrators, exciting two different modes of
motion of the monopiles

https://grow-offshorewind.nl/project/gentle-driving-of-piles

ht: Gentle Driving of Piles @ ~
Watch later Share

MORE VIDEOS

P o) 045/354 | T




GDP shaker

= combination of vibro hammer with
torsional shaker

= torsional shaking as main driving
mechanism

vertical
vibration

—> avoids expansion due to driving
—> less energy required to drive pile

= significant noise reduction compared to
impact driving

e
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GDP project: experiment at Maasvlakte
(

comparing: impact hammer |P, vertical

"

vibro) hammering and GDP (torsional+vibro)

strain FBG technology
accelerometer MEMS
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Figure 1.1: Instrumentation of a GDP pile.



GDP Signal aHHIYSiS example by Sergio Sanchez Gémez
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sampling — aliasing / wheel rotation movie

theory for continuous-time signals, in practice work with discrete time signals

= 30 frames per second (fps)
= periodic signal: 7 identical spokes in this wheel
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sampling — aliasing / imaging

sub-sampled image
— Moiré pattern

TUDelft original digital image, 13 Mpixel



MUDE week 2.3 material

MUDE textbook — theory, derivations, in a natural order (6 chapters, each
supplemented by a video ~ 10 min)

3 worked examples: pen+paper-exercise (SP-problem solving — chapters 1-3)
1 simple Jupyter Notebook: to demonstrate Fourier series (experience)

1 quiz on sampling (chapter 4)
workshop (Wed): Jupyter Notebook (DFT)
group assignment (Fri): analysing signals in frequency domain, in Python (synthetic,

cantilever beam, sea-level) — hand-in .ipynb Notebook (for grading); 10 tasks (last
o#e optional) — no separate md report

TUDelft



week 48 Monday, 25 November 2024 - Sunday, 1 December 2024 Activities of all types shown g { Today >
Mon 25 Nov Tue 26 Nov Wed 27 Nov Thu 28 Nov Fri 29 Nov
8:00
GA
oBs - 10:45 sz
9:00 CEGM1000 / CEGQ1000 CEGM1000 / CEGQ1000
I Modelling, Uncertainty and I Modelling, Uncertainty and
Data for Engineers Data for Engineers
CEG-Lecture Hall A (23.HG.0.23) CEG-Instruction Room 1.95
10:00 | Lecture (23.HG.1.95)
WS CEG-Instruction Room 1.96
—_— — (23.HG.1.96)
10:45 - 12:45 1145 | 10 toss-qzes CEG-nstruction Room 1.97
11:00 CEGM1000 / CEGQ1000 CEGM1000/ CEGM1000 / CEGM1000/ CEGQ1000 (23.HG.1.97)
/ Modelling, Uncertainty and CEGQ1000 CEGQ1000 [ Modelling, Uncertainty and CEG-Instruction Room 1.98
Data for Engineers LRRaalalli [ Modelling, Data for Engineers (23.HG.1.98)
CEG-Instruction Room 1.96 Ha” C Uncertainty CEG-Instruction Room 1.96 CEG-Project Room 1.93
12:00 (23.HG.1.96) and Data for (23.HG.1.96) (23.HG.1.93)
(E‘E(?:l?s!r:r?tion Room 1.98 E:&ineers EEG-Tstr:i:}ion Room 1.97 Workshop
A
13:00 CEGM1000 / CEGQ1000
’ I/ Modelling, Uncertainty and
N . VR e H
14:00

Note: do not distribute the tasks

“
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MUDE week 2.3 journey

learning objective:
understanding of, and insight in analysing signals, in particular in frequency domain

proofs and derivations will not be asked for in exam; instead, you need to be able to
apply the theory to actual problems (problem solving), and interpret the results (as
obtained with a Python Notebook)

no need to memorize equations

exam: focus on chapter 4 (sampling) and chapter 5 (DFT), Notebook on DFT (Wed),
and in particular the questions in the group assignment (Fri)

e
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chapter 1 + chapter 2
Fourier Series

express periodic signal x(t), with period T, = f—, as sum of harmonically
related cosines and sines:

T x(t) =ag+ z a; cos(2mk fyt) + z by sin(2rk fyt) k € Nt

x( real Fourier Series

/\/\ /\/\ /\/ e/2mhot = cos(2mfyt) + j SIU(Zﬂfot)

x(t) = z X, el?mklot ke

continuoustimet € R k=—o0

TU Delft complex exponential Fourier series (double sided)




chapter 3

Fouriler transform

express a-periodic signal x(t), as integral over frequency f:

x(t) =J X(f) el?™Itdf feER
o X

e)2mIt = cos(2mft) + j sin(2mft)

X(t) X(f)

G

.t - ‘/\/\\/ \/\/\\ .t

3
TU Delft continuous time t € R continuous frequency f € R



sampling — discrete time

sequence X, = X(nAt)

Xs(t)

4

neEZzZ

had

> 1

At sampling interval

discrete time t

Discrete Time Fourier Transform (DTFT)

e
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sample frequency domain: kAf

ke’

X X

Annnnﬂ

|

ﬂnnnnn

chapter 4

UUVVVUU

UVVVVUU

continuous frequency f € R

sampling in time domain generates copies of X(f)

in frequency domain



chapter 5

Discrete Fourier Transform (DFT) sequence Xy = Xs(kAf)
X, k €{01,..,N-1}
sequence x, = x(nAt)
Xs(t) ne€{01,..,N—1} J?‘I’"TQ
fft \(ffitha
- <> iy 3TT TT& A

had

At sampling interval

discrete time t

0.3606
0.3679
0.3753
0.3827
0.3903
0.3979
0.4056
0.4133
0.4211

5 0.4290
TUDelft

-0.1107 - 0.0630i
-0.1081 - 0.0623i
-0.1055 - 0.0615i
-0.1030 - 0.0608i
-0.1006 - 0.0601i
-0.0983 - 0.0594i
-0.0960 - 0.0587i
-0.0938 - 0.0580i
-0.0916 - 0.0573;i
-0.0895 - 0.0567i



chapter 6

periodogram

estimate for Power Spectral Density (PSD) of signal x(t):  S(kAf) = %lel2

shows how power of signal is distributed

IS\(f) [W/Hz] (density) ) .
over different frequencies

signal power: P = ffoooS(f)df

f[Hz]

product Af S(kAf) is contribution by frequency band
with width Af, at frequency f = kAf, to power P of signal

e
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Fourier transform - history

Jean-Baptiste Joseph Fourier 1768 - 1830

’ Theoria Interpolationis — CF Gauss
Sit X functio arcus indeterminati # huius formae

oo cosx—+ " cos 22 " cos 3 ete.
~+6'sinz—6"sin 22 6"sin 324 etc.

quae non excurrat in infinitum,. sed cum cosma et sinma abrumpatur, ita
ut multitudo coéfficientium (incognitorum) sit 2m--1. Pro totidem valoribus di-
versis ipsius «, puta a, b, ¢, d etc. dati sint valores respondentes functionis X
puta 4, B, C, D .... (Ceterum valores ipsius @, quorum differentia est periphe-
ria integra sive eius multiplum, manifesto hic pro diversis haberi nequeunt). Ex

e
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Carl Friedrich Gauss 1777-1855

Leonhard Euler 1707-1783
Alexis-Claude Clairaut 1713 -1765
Daniel Bernoulli (1700-1782)
Joseph Louis Lagrange (1736-1813)
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